Investigation Of Antimutagenic Activities of Commiphora Gileadensis Essential Oil Against Cyclophosphamide Induced Genotoxicity in Mice
Main Article Content
Abstract
Commiphora gileadensis, a wild aromatic medicinal plant, is part of the Burseraceae family, which contains 190 species under the genus Commiphora. It has both ethnobotanical and therapeutic applications. Currently, the antigenotoxic effects of Commiphora gileadensis essential oil (CEO) was investigated by assessing chromosomal anomalies in bone marrow cells, DNA fragmentation in hepatocytes, chromosomal aberrations in spermatocytes, and sperm head and tail anomalies in mice. Animals were divided into the following groups: CP treated groups (20 mg /kg b.w.), the control group (received no treatment), corn oil treated group, group administered CEO for 7 days at 300 mg /kg b.w., three groups administered CEO for 7 days at (100, 200 or 300 mg /kg b.w.) plus cyclophosphamide. In vivo investigations demonstrated that preliminary treatment with the tested concentrations of CEO reduced CP-induced injury. Therefore, research has shown that the CEO is a potential factor for protection against the genetic toxicity caused by CP.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Amiel, E., Ofir, R., Dudai, N., Soloway, E., Rabinsky, T., Rachmilevitch, S. (2012). β-Caryophyllene, a compound isolated from the biblical balm of gilead (Commiphora gileadensis), is a selective apoptosis inducer for tumor cell lines. Evidence-based complementary and alternative medicine, 2012.
Al-Abdallat, A. M., Adayileh, B. K., Sawwan, J. S., Shibli, R., Al-Qudah, T. S., Abu Irmaileh, B., Bastani, Y. (2023). Secondary metabolites profiling, antimicrobial and cytotoxic properties of Commiphora gileadensis L. leaves, seeds, callus, and cell suspension extracts. Metabolites, 13(4), 537.
Shadid, K. A., Shakya, A. K., Naik, R. R., Al-Qaisi, T. S., Oriquat, G. A., Atoom, A. M., Farah, H. S. (2023). Exploring the chemical constituents, antioxidant, xanthine oxidase and COX inhibitory activity of Commiphora gileadensis commonly grown wild in Saudi Arabia. Molecules, 28(5), 2321.
Ahmed, H., Rashed, M. M., Almoiliqy, M., Abdalla, M., Bashari, M., Zaky, M. Y., ... & Jiang, L. P. (2023). Antioxidant activity and total phenolic compounds of Commiphora gileadensis extracts obtained by ultrasonic‐assisted extraction, with monitoring antiaging and cytotoxicity activities. Food Science & Nutrition. 11(6), 3506–3515.
Mohammed, E. A., & Samy, A. S. (2013). Antimicrobial activity of essential oil and methanol extract from Commiphora molmol (Engl.) resin.International Journal of Current Microbiology and Applied Sciences, 2 (12).
Abdallah, H. M., Mohamed, G. A., Ibrahim, S. R., Koshak, A. E., Alnashri, I., Alghamdi, A., ... & Khairy, A. (2022). Commigileadin A: A new triterpenoid from: Commiphora Gileadensis: Aerial parts. Pharmacognosy Magazine, 18(78), 256-260.
Al-Hazmi, A.S., Alherthi, M. N., Aljuaid, M. M., Alfifi, O. A., Alshaer, R. S., Alsaadi, R. S., Almehmadi, M. M., ... & Hawash, Y. A. (2020). In vitro and in vivo antibacterial effect of Commiphora gileadensis methanolic extract against methicillin-resistant staphylococcus aureus (MRSA) and pseudomonas aeruginosa. Pakistan Journal of Biological Sciences ,23(12), 1676-1680.
de Souza Pereira, J. J., Pereira, A. D. P., Jandú, J. J., Da Paz, J. A., Crovella, S., dos Santos Correia, M. T., & de Azevêdo Silva, J. (2017). Commiphora leptophloeos phytochemical and antimicrobial characterization. Frontiers in microbiology, 8, 52.
Asmaa S. Salman, Emad A. Alsherif, Seham M. Althobiti(2023). Evaluation of the potential protective effect of Commiphora gileadensis on CCL4 induced genotoxicity in mice Egypt. J. Chem. Vol. 66, No. SI 13 1935 - 1944
Bergmann M., Wendtner C.M. [Chronic lymphocytic leukemia]. Dtsch Med Wochenschr 2015; 140(7): 479-82. German.
Dan D, Fischer R, Adler S, Förger F, Villiger PM. Cyclophosphamide: as bad as its reputation? Long-term single centre experience of cyclophosphamide side effects in the treatment of systemic autoimmune diseases. Swiss Med Wkly 2014; 144: w14030.
Vredenburg G, den Braver-Sewradj S, van Vugt-Lussenburg BM, Vermeulen NP, Commandeur J, Vos JC. (2014). Activation of the anticancer drugs cyclophosphamide and ifosfamide by cytochrome P450 BM3 mutants. Toxicol Lett,232(1),182-92.
Moore, P. D., Patlolla, A. K., & Tchounwou, P. B. (2011). Cytogenetic evaluation of malathion-induced toxicity in Sprague-Dawley rats. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 725(1–2), 78–82.
Yosida, T. H., Amano, K. (1965). Autosomal polymorphism in laboratory-bred and Wild Norway rats, rattus norvegicus, found in Misima. Chromosoma, 16(6), 658 - 667.
Perandones, C. E., Illera, V. A., Peckham, D., Stunz, L. L., & Ashman, R. F. (1993). Regulation of apoptosis in vitro in mature murine spleen T cells. The Journal of Immunology, 151(7), 3521–3529.
Evans, E. P., Breckon, G., & Ford, C. E. (1964). An air-drying method for meiotic preparations from mammalian testes. Cytogenetic and Genome Research, 3(5), 289–294.
Wyrobek, A.J.; Bruce, W.R. (1978). The induction of sperm-shape abnormalities in mice and humans. In Hallaender, A., & De Serres, F.J. (Eds.), Chemical Mutagens: Principles and methods for their detection. (pp. 257-285). New York and London: Plenum Press.
Jain R., Jain S.K. (2012). Effect of Buchanania lanzan Spreng. bark extract on cyclophosphamide induced genotoxicity and oxidative stress in mice. Asian Pac J Trop Med, 5(3), 187-91.
El-Souda S.S.E., Mohammed R.S., Marzouk M.M., Fahmy M.A., Hassan Z.M., Farghaly A.A. (2014). Antimutagenicity and phytoconstituents of Egypitan Plantago albicans L. Asian Pac J Trop Dis; 4(2), S946-51.
Green D.M., Liu W., Kutteh W.H., Ke R.W., Shelton K.C.( 2014). Sklar C.A., Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St Jude Lifetime Cohort Study. Lancet Oncol, 15(11): 1215-23.
Gowri Shankar, N. L., Manavalan, R., Venkappayya, D., David Raj, C. (2008). Hepatoprotective and antioxidant effects of Commiphora berryi (Arn) Engl bark extract against CCl(4)-induced oxidative damage in rats. Food and Chemical Toxicology, 46(9), 3182–3185.
Ahmad, A., Raish, M., Ganaie, M. A., Ahmad, S. R., Mohsin, K., Al-Jenoobi, F. I., Al Mohizea, A. M., Alkharfy, K. M. (2015). Hepatoprotective effect of Commiphora myrrha against d-GalN/LPS-induced hepatic injury in a rat model through attenuation genes. Pharmaceutical of pro-inflammatory cytokines Biology, 53(12), 1759–1767.
Compaoré, M., Meda, R. N. T., Bakasso, S., Vlase, L., & Kiendrebeogo, M. (2016). Antioxidative, anti-inflammatory potentials and phytochemical profile of Commiphora africana (A. Rich.) Engl. (Burseraceae) and Loeseneriella africana (Willd.) (Celastraceae) stem leaves extracts. Asian Pacific Journal of Tropical Biomedicine, 6(8), 665–670.
Mathur, S., Mulani, R., George, L.B., Barot, C., Thakkar, A., Bhingradiya, V., & Patel, R. (2016). Antioxidant and cytotoxic activity of Commiphora Mukul (GuGGul) extracts against HeLa cell- line. International Journal of Approximate Reasoning, 4, 1258-1267.
Ezenyi, I.C., I. Okoro and C.A. Ufondu. (2021). Hepatoprotective potential of Commiphora kerstingii Engl. stem bark against carbon tetrachloride-induced acute liver injury. Trends Med. Res, 16, 7-13.
Farid, M. M., Aboul Naser, A. F., Salem, M. M., Ahmed, Y. R., Emam, M., & Hamed, M. A. (2022). Chemical compositions of Commiphora opobalsamum stem bark to alleviate liver complications in streptozotocin-induced diabetes in rats: Role of oxidative stress and DNA damage. Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals, 27(7), 671–683.
Alahmari, A. S., El-Mekkawy, H. I., Al-Doaiss, A. A., & Alduwish, M. A. (2022). Effect of natural Commiphora myrrha extract against hepatotoxicity induced by alcohol intake in Rat Model. Toxics, 10(12), 729.
Yang, Y., Karakhanova, S., Werner, J., & Bazhin, A. V. (2013). Reactive oxygen species in cancer biology and anticancer therapy. Current medicinal chemistry, 20(30), 3677–3692
Baurdoux, M., Snelder, D., & De Snoo, G. (2004). Pesticides in the Cagayan valley (Philippines): usage, drift patters and exposure of farmers differing in income and market access. Communications in Agricultural and Applied Biological Sciences, 69(4), 765-778.
Ciesielski, S., Loomis, D.P., Mims, S.R., & Auer, A. (1994). Pesticide exposures, cholinesterase depression, and symptoms among North Carolina migrant farmworkers. American Journal of Public Health, 84(3), 446-451.
Cooper, J., Dobson, Η. (2007). The benefits of pesticides to mankind and the environment. Crop Protection, 26, 1337-1348.
Damalas, C.A., Georgiou, E.B., & Theodorou, M.G. (2006). Pesticide use and safety practices among Greek tobacco farmers: a survey. International Journal of Environment Health Reserch, 16, 339-348.
Dasgupta, S., Meisne, C., & Huq, M. (2007). A pinch or a pint? Evidence of pesticide overuse in Bangladesh. Journal of Agricultural Economics, 58, 91-114.
Del Prado-Lu, J.L. (2007). Pesticide exposure, risk factors and health problems among cutflower farmers: a cross sectional study. Journal of Occupational Medicine and Toxicology, 2:9 https://doi.org/10.1186/1745-6673-2-9.
Devi, P.I. (2009). Health risk perceptions, awareness and handling behaviour of pesticides by farm workers. Agricultural Economics Research Review, 22(23), 263-268.
Elizabeth, S. & Zira, D. (2009). Awareness and effectiveness of vegetable technology information packages by vegetable farmers in Adamawa State, Nigeria. Journal of Agriculture Research, 4(2), 65-70.
EPA. (2011). Pesticides industry. sales and usage 2006 and 2007: Market Estimates Archived 2015-03-18 at the Wayback Machine.
FAO. (2014). Food and Agricultural Organization of the United Nations. [Online], 2014. Pesticides: Balancing Crop Protection and Responsible Use. Plant Production and Protection Division. FAO, Rome, Italyhttp://www.fao.or.jp/fileadmin/ contents/ publications/pub_FS_pesticides_low.pdf.
Focho, D.A., Newu, M.C., Anjah, M.G., Nwana, F.A., & Ambo, F.B. (2009). Ethnobotanical survey of trees in Fundong, Northwest Region, Cameroon. Journal of Ethnobiology and Ethnomedicine, 5, 17-21.
Gay, L.R. (1992). Educational Research: Competences for analysis and application (3rd ed.) Paris: Merrill.
Grieshop, J.I. (1988). Protective clothing and equipment: Beliefs and behavior of pesticide users in Ecuador. Paper presented at the performance of protective clothing: 2nd symposium, ASTM STP 989, Philadelphia, PA.
Hajjar, M.J. (2012). The persisted organic pesticides pollutant (POPs) in the Middle East Arab countries. International Journal of Agronomy and Plant Production, 3, 11-18.
Hashemi, S.M., & Damalas, C.A. (2011). Farmers' perceptions of pesticide efficacy: reflections on the importance of pest management practices adoption. Journal of Sustainable Agriculture, 35, 69-85.
House, J.S., Kessler R.C., &. Herzog, A.R. (1990). Age, socioeconomic status, and health. The Milbank Quarterly, 68, 383-411.
Jensen, H.K., Konradsen, F., Jórs, E., Petersen, J.H., &. Dalsgaard, A. (2011). Pesticide use and self-reported symptoms of acute pesticide poisoning among aquatic farmers in phnom penh, Cambodia. Journal of Toxicology, Article ID 639814, 8 pages.
Jones, E., Mabota, A., & Larson, D.W. (2009). Farmers' knowledge of health risks and protective gear associated with pesticide use on cotton in Mozambique. Journal of Developing Areas, 42, 267-282.
Khan, M., Mahmood, H.Z., & Damalas, C.A. (2015). Pesticide use and risk perceptions among farmers in the cotton belt of Punjab, Pakistan. Crop Protection, 67, 184-190.
Kumar R. (1991). La lutte contreles insectes ravageurs, la situation de l’agriculture africaine. CTA/Karthala Eds. Wageningen, Paris, 310 p
Litchfield, M.H. (2005). Estimates of acute pesticide poisoning in agricultural workers in less developed countries. Toxicology Review, 24, 271-278.
Lorenz, A.N., Prapamontol, T., Narksen, W., Srinual, N., Barr, D.B., & Riederer, A.M. (2012). Pilot study of pesticide knowledge, attitudes, and practices among pregnant women in Northern Thailand. International Journal of Environmental Research and Public Health, 9, 3365-3383.
Mugenda O.M. & Mugenda A.G. (1999). Research methods. Quantitative and qualitative approach. pp 15-40 ACTS Press Nairobi, (Kenya).
Oerke, E.C., & Dehne, H.W. (2004). Safeguarding production-losses in major crops and the role of crop protection. Crop Protection, 23, 275-285.
Okello, J.J., & Swinton, S. M. (2011). International food safety standards and the use of pesticides in fresh export vegetable production in developing countries: implications for farmer health and the environment: In Pesticides-Formulations, Effects, Fate, M. Stoytcheva, Ed., InTech, Rijeka, Croatia, pp183-198.
Orozco, F.A., Cole, D. C., Forbes, G., Kroschel, J., Wanigaratne, S., & Arica, D. (2009). Monitoring adherence to the International Code of Conduct: highly hazardous pesticides in Central Andean agriculture and farmers’ rights to health. International Journal of Occupational and Environmental Health, 15(3), 255-268.
Pimentel, D. (2005). Environmental and economic cost of the application of pesticides primarily in the United States. Environment Development and Sustainability, 7, 229-252.
Ratta A. (1993). City women farm for food and cash. International Ag-Sieve, 6(2), 1-2.