Effect of Piracetam on Brain Oxidative Stress and Tissue Damage Following Toluene Exposure in Rats

Main Article Content

Omar M.E. Abdel- Salam
Marawa El-Sayed El-Shamarka
Nabila S. Hassan
Dalia M. Abouelfadl


In this study, the effect of the nootropic drug piracetam on brain oxidative stress and histopathological changes in brain, liver and kidney following exposure to toluene in rats was examined. Piracetam (150 or 300 mg/kg, subcutaneously, daily) was given along with toluene (500 mg/kg, intraperitoneally, daily) for one week. The brain content of malondialdehyde (MDA), reduced glutathione (GSH) and the activity of paraoxonase-1 (PON-1), and butyrylcholinesterase (BChE) in brain homogenates were determined. Histopathology of the brain, liver and kidney and brain Bax immunohistochemistry were performed. Results showed that exposure to toluene resulted in increased brain lipid peroxidation (MDA) and NO along with decreased reduced glutathione. Toluene also inhibited PON-1, and BChE activities. The administration of piracetam had no significant effect on brain lipid peroxidation. The level of reduced glutathione was unchanged by piracetam but PON1 activity was increased by the lower dose of the drug. Piracetam showed no significant effect on BChE activity in toluene treated rats. Histopathological examination of the brain of toluene only treated rats showed degenerated neurons in cerebral cortex, marked neuronal vacuolation in hippocampus and focal hemorrhage. Bax 3 immunohistochemical staining showed cytoplasmic reactivity in degenerated neurons. Rats given piracetam showed decreased cortical cellularity, increased number of degenerated neurons and increased BAX staining. The higher dose of the drug caused sinusoidal hemorrhage and intertubular hemorrhage in kidney. Collectively, these results indicate that treatment with piracetam wan not able to decrease neuronal damage in rats exposed to toluene.

Article Details

How to Cite
O. M. A.- Salam, M. E.-S. El-Shamarka, N. S. Hassan, and D. M. Abouelfadl, “Effect of Piracetam on Brain Oxidative Stress and Tissue Damage Following Toluene Exposure in Rats”, Int.J.Halal.Res, vol. 3, no. 1, pp. 8-23, Mar. 2021.


Abdel-Salam, O.M.E., 2006.Vinpocetine and piracetam exert antinociceptive effect in visceral pain model in mice. Pharmacol. Rep.58, 680-691.

Abdel-Salam, O.M.E, Nada, S.A., 2011. Effect of piracetam, vinpocetine and ginkgo biloba on antipsychotic-induced impairment of learning and memory. Ceska a Slovenska Neurologie a Neurochirurgie 74 (1), 29-35.

Abdel-Salam, O.M.E., Khadrawy, Y.A., Salem, N.A., Sleem, A.A., 2011. Oxidative stress in a model of toxic demyelination in rat brain: The effect of piracetam and vinpocetine. Neurochemical. Res. 36 (6), 1062-1072.

Abdel-Salam, O.M.E., Sleem, A.A., Youness, E.R., Morsy, F.A. 2019. Exacerbation of toluene’s neuro- and hepato-toxicity by amiodarone or chlorpropamide: Involvement of oxidative stress. Reactive Oxygen Species 8(24),358–371.

Abdel-Salam, O.M.E., Hamdy, S.M., Seadawy, S.A.M., Galal, A.F., Abouelfadl, D.M., Atrees, S.S., 2016a. Effect of piracetam, vincamine, vinpocetine, and donepezil on oxidative stress and neurodegeneration induced by aluminum chloride in rats. Comp. Clin. Pathol. 25 (2), 305–318.

Abdel-Salam, O.M.E., Youness, E.R., Morsy, F.A., Yassen, N.N., Mohammed, N.A., Sleem, A.A., 2016b. Methylene blue protects against toluene-induced brain damage: involvement of nitric oxide, NF-κB, and caspase-3. React Oxyg Species (Apex) 2(5), 371–87. doi: 10.20455/ros.2016.855.

Abdel-Wahhab, M.A., El-Nekeety, A.A., Aly, S.E. 2019. Mycotoxins in Children’s Food: Problem and Halal Management. Int. J. Halal Res. 1(1), 16-38.

Archer, S., 1993. Measurement of nitric oxide in biological models. FASEB J. 7(2). 340-360.

Atef, M.M., Galal, A.F., Abdel-Salam, O.M.E., Shafee, N., Tadros, M.G., Khalifa, A.E., 2015. Neurobehavioral and neurochemical changes in toluene-treated rats and the effect of antioxidants. World J. Pharmaceutical. Res. 4(12),309–356.

Aydin, K., Kircan, S., Sarwar, S., Okur, O., Balaban, E., 2009. Smaller gray matter volumes in frontal and parietal cortices of solvent abusers correlate with cognitive deficits. A.J.N.R. 30, 1922-1928.

Baltazar, M.T., Dinis-Oliveira, R.J., de Lourdes Bastos M., Tsatsakis, A.M., Duarte, J.A., Carvalho, F., 2014. Pesticides exposure as etiological factors of Parkinson's disease and other neurodegenerative diseases--a mechanistic approach. Toxicol. Lett. 230(2), 85–103.

Babar, Z.U. M., Jaswir, I., Malfiah, M.H.M., Ismail,S., Raus, R. A., Tareq, A.M., 2020. The Thrombolytic and Cytotoxic Effects of Nigella sativa (L.) Seeds: The Prophetic Medicine ”, Int. J. Halal. Res, 2 (2), 70-77.

Brown, G.C., 2010. Nitric oxide and neuronal death. Nitric Oxide 23(3), 153-165.

Brunelle, J.K. , Letai, A., 2009. Control of mitochondrial apoptosis by the Bcl-2 family. J. Cell. Sci. 122, 437-441.

Budygin, E.A., Gaĭnetdinov, R.R., Titov, D.A., Kovalev, G.I., 1996. The effect of a low dose of piracetam on the activity of the dopaminergic system in the rat striatum. Eksp. Klin. Farmakol. 59,6–8. Article in Russian.

Burmistrov, S.O., Arutyunyan, A.V., Stepanov, M.G., Oparina, T.I., Prokopenko, V.M., 2001. Effect of chronic inhalation of toluene and dioxane on activity of free radical processes in rat ovaries and brain. Bull. Exp. Biol. Med. 132(3), 832-836.

Choi, D.W., 1988. Glutamate neurotoxicity and diseases of the nervous system. Neuron 1, 623- 634.

Costa, L.G., Giordano, G., Cole, T.B., Marsillach, J., Furlong, C.E., 2013. Paraoxonase 1 (PON1) as a genetic determinant of susceptibility to organophosphate toxicity. Toxicology 307,115–122. doi: 10.1016/j.tox.2012.07.011.

Croisile, B., Trillet, M., Fondarai, J., Laurent, B., Mauguière, F., Billardon, M.,1993. Long-term and high-dose piracetam treatment of Alzheimer's disease. Neurology 43(2),301-5. doi: 10.1212/wnl.43.2.301.

Eisenberg, D.P., 2003. Neurotoxicity and mechanism of toluene abuse. Einstein. Quart. J. Biol. Med. 19,150-159.

Elkoussi, A., Bakheet, S., 2011. Volatile substance misuse among street children in Upper Egypt. Subst Use Misuse 46 (Suppl 1), 35-39.

Ellman, G.L., 1959. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 82(1), 70-77.

Ellman, G.L., Courtney, K.D., Andres, V., Jr., Feather-Stone, R.M., 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7,88–95. doi: 10.1016/0006-2952(61)90145-9.

Eckerson, H.W., Wyte, C.M., La Du, B.N., 1983. The human serum paraoxonase/arylesterase polymorphism. Am. J. Hum. Genet. 35(6),1126–1138.

Engelke, M., Diehl, H., Tahti, H., 1992. Effects of toluene and n-hexane on rat synaptosomal membrane fluidity and integral enzyme activities. Pharmacol. Toxicol. 71(5),343–347.

Fedi, M., Reutens, D., Dubeau, F., Andermann, E., D’Agostino, D., Andermann, F., 2001. Long-term efficacy and safety of piracetam in the treatment of progressive myoclonus epilepsy. Arch. Neurol. 58, 781–786.

Filley, C.M., 2013. Toluene abuse and white matter a model of toxic leukoencephalopathy. Psychiatr. Clin. N. Am. 36, 293–302. http://dx.doi.org/10.1016/j.psc.2013.02.008

Fornazzari, L., Pollanen, M.S., Myers, V., Wolf, A., 2003. Solvent abuse-related toluene leukoencephalopathy. J. Clin. Forensic. Med. 10(2), 93–95. doi: 10.1016/S1353-1131(03)00035-X

Franco, R., Schoneveld, O. J., Pappa, A., Panayiotidis, M. I., 2007. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem. 113:4, 234 – 258. doi: 10.1080/13813450701661198.

Furlong, C.E., Marsillach, J., Jarvik, G.P., Costa, L.G., 2016. Paraoxonases-1, -2 and -3: What are their Functions? Chem. Biol. Interact. 259(Pt B): 51–62. doi:10.1016/j.cbi.2016.05.036

Halifeoglu, I., Canatan, H., Ustundag, B., Ilhan, N., Inanc, F., 2000. Effect of thinner inhalation on lipid peroxidation and some antioxidant enzymes of people working with paint thinner. Cell. Biochem. Funct. 18(4), 263–267.

Halliwell, B., 1992. Reactive oxygen species and the central nervous system. J. Neurochem. 59(5),1609–23. doi: 10.1111/j.1471-4159.1992.tb10990.x.

Hassan, N.S., D. M. Abouelfadl, and O. M. Abdel-Salam, 2020. The ameliorative effect of vinpocetine on liver fibrosis and bone changes in the bile-duct ligated rat. Int. J. Halal. Res, 2(2): 58-69/.

He, Z.., Hu, M., Zha, Y.H.., Li, Z.C., Zhao B., Yu L.L., et al., 2014. Piracetam ameliorated oxygen and glucose deprivation-induced injury in rat cortical neurons via inhibition of oxidative stress, excitatory amino acids release and P53/Bax. Cell. Mol. Neurobiol. 34,539–547. doi 10.1007/s10571-014-0037-x

Holinski, S., Claus, B., Alaaraj, N., Dohmen, P.M., Kirilova, K., Neumann, K., et al., 2008. Cerebroprotective eff ect of piracetam in patients undergoing coronary bypass surgery. Med. Sci. Monit. 14, PI53-157.

Ince, G.D,, Agan, K., Afsar, N., Borucu, D., Us, O., 2008. The effect of piracetam on ataxia: clinical observations in a group of autosomal dominant cerebellar ataxia patients. J. Clin. Pharm. Ther. 33, 175-178.

Keil, U., Scherping, I., Hauptmann, S., Schuessel, K., Eckert, A., Müller, W.E., 2006. Piracetam improves mitochondrial dysfunction following oxidative stress. Br. J. Pharmacol. 147, 199–208. doi:10.1038/sj.bjp.0706459.

Kessler, J., Thiel, A., Karbe, H., Heiss, W.D., 2000. Piracetam improves activated blood flow and facilitates rehabilitation of poststroke aphasic patients. Stroke 31, 2112-6.

Kodavanti, P.R., Royland, J.E., Richards, J.E., Besas, J., Macphail, R.C., 2011. Toluene effects on oxidative stress in brain regions of young-adult, middle-age, and senescent Brown Norway rats. Toxicol. Appl. Pharmacol. 256(3),386–398.

Kodavanti, P.R., Royland, J.E., Moore-Smith, D.A., Besas, J., Richards, J.E., Beasley, T.E., et al., 2015. Acute and subchronic toxicity of inhaled toluene in male Long-Evans rats: oxidative stress markers in brain. Neurotoxicology 51,10–19. doi: 10.1016/j.neuro.2015.09.001.

La Du, B.N., 1992. Human serum paraoxonase/arylesterase. In: Kalow W, editor. Pharmacogenetics of drug metabolism. New York: Pergamon Press, Inc. pp. 51-91.

Lenègre A, Chermat R, Avril I, Stéru L, Porsolt RD. 1988. Specificity of piracetam's anti-amnesic activity in three models of amnesia in the mouse. Pharmacol Biochem Behav. 29(3), 625-9.

Lubman, D.I., Yucel, M., Lawrence AJ., 2008. Inhalant abuse among adolescents: neurobiological considerations. Br. J. Pharmacol., 154, 316–326.

Mattia, C.J., Adams, J.D., Jr., Bondy, S.C., 1993. Free radical induction in the brain and liver by products of toluene catabolism. Biochem. Pharmacol. 46(1), 103–110. doi: 10.1016/0006-2952(93)90353-x.

Menini, T., Gugliucci, A., 2014. Paraoxonase 1 in neurological disorders. Redox Rep. 19, 49-58.

Monks, TJ., Ghersi-Egea, JF., Philbert, M., Cooper, AJ., Lock, EA., 1999. Symposium overview; The role of glutathione in neuroprotection and neurotoxicity. Toxicol Sci. 51(2),161-77. doi: 10.1093/toxsci/51.2.161.

Nair, V., Turner, G.A., 1984. The thiobarbituric acid test for lipid peroxidation: structure of the adduct with malondialdehyde. Lipids 19, 804-805.

Nguemo, C.C., M. Tita, and M. A. Abdel-Wahhab, 2019. Preliminary screening of pesticides used by farmers in North West Cameroon, Int. J. Halal. Res, 1(1), 48-55.

Oltvai, Z.N., Miliman, C.L., Korsmeyer, S.J., 1993. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 74, 609–619.

Pilch H. , Miiller W.E., Piracetam elevates muscarinic cholinergic receptor density in the frontal cortex of aged but not of young mice. Psychopharmacology 94, 74-78.

Reyes, R.C., Brennan, A.M., Shen, Y., Baldwin, Y., Swanson, RA., 2012. Activation of neuronal NMDA receptors induces superoxide-mediated oxidative stress in neighboring neurons and astrocytes. J Neurosci. 32(37), 12973–78.

Rosenberg, N.L., Kleinschmidt-DeMasters, B.K., Davis, K.A., Dreisbach. J.N., Hormes, J.T., Filley, C.M., 1988. Toluene abuse causes diffuse central nervous system white matter changes. Ann. Neurol. 23(6),611–614. doi: 10.1002/ana.410230614.

Scheuer, K., Rostock, A., Bartsch, R., Müller, W.E., 1999. Piracetam improves cognitive performance by restoring neurochemical deficits of the aged rat brain. Pharmacopsychiatry 32 (Suppl 1), 10-16. doi: 10.1055/s-2007-979231

Shorvon, S., 2001. Pyrrolidone derivatives. Lancet 358(9296), 1885–92.

Sobrevia, L., Ooi, L., Ryan, S., Steinert, J.R., 2016. Nitric oxide: a regulator of cellular function in health and disease. Oxid. Med. Cell. Longev. 2016. 9782346.

Stancheva, S.L., Petkov, V.D., Hadjiivanova, C.I., Petkov, V.V., 1991. Agerelated changes of the effects of a group of nootropic drugs on the content of rat brain biogenic monoamines. Gen. Pharmacol. 22, 873–877.

Stockburger, C., Kurz, C., Koch, K.A., Eckert, S.H., Leuner, K., Müller, W.E., 2013. Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam. Biochem. Soc. Trans. 41(5),1331-4. doi: 10.1042/BST20130054.

Stockmans, F., Deberdt, W., Nyström, A., Nyström, E., Stassen, JM., Vermylen, J., Deckmyn, H., 1998. Inhibitory effect of piracetam on platelet-rich thrombus formation in an animal model. Thromb. Haemost. 79(1), 222-227.

Tokunaga, I., Gotohda, T., Ishigami, A., Kitamura, O., Kubo, S., 2003. Toluene inhalation induced 8-hydroxy-2'-deoxyguanosine formation as the peroxidative degeneration in rat organs. Leg. Med. (Tokyo) 5(1), 34–41.

Waegemans, T., Wilsher, C.R., Danniau, A., Ferris, S.H., Kurz, A., Winblad, B., 2002. Clinical effi cacy of piracetam in cognitive impairment: a meta-analysis. Dement. Geriatr. Cogn. Disord. 13, 217-224.

Wink, D.A., Feelisch, M., Vodovotz, Y., Fukuto, J., Grisham, M.B., 1999. The chemical biology of nitric oxide. In: Gilbert, Colton, editors. Reactive oxygen species in biological systems. New York: Kluwer Academic/Plenum Publishers. p. 245-291.

Wu, G., Fang, Y.Z., Yang, S., Lupton, J.R., Turner, N.D., 2004. Glutathione Metabolism and Its Implications for Health. J. Nutr. 134, 489–492.

Yucel, M., Takagi, M., Walterfang, M., Lubman, D.I., 2008. Toluene misuse and long-term harms: a systematic review of the neuropsychological and neuroimaging literature. Neurosci. Biobehav. Rev. 32(5), 910–26. doi: 10.1016/j.neubiorev.2008.01.006.

Yuste, J.E., Tarragon, E., Campuzano, C.M., Ros-Bernal, F., 2015. Implications of glial nitric oxide in neurodegenerative diseases. Front. Cell. Neurosci. 9, 322.