The Thrombolytic and Cytotoxic Effects of Nigella sativa (L.) Seeds: The Prophetic Medicine
Main Article Content
Abstract
The Water-Soluble Extract (WSE) is a crude bioactive phytoconstituent of Nigella sativa (L.) seeds discovered recently. The current findings report about the thrombolytic and cytotoxic effects of WSE using human blood clot lysis and brine shrimp lethality (BSL) bioassay. The thrombolytic effect of WSE (1,666.67 µg/mL) was determined via the clot and lysate weight measurements compared to streptokinase (STK) of 30,000 IU/mL and normal saline (NS) while the cytotoxicity of WSE (44.14-2,000 µg/mL) against vincristine sulfate (VCS;3.125-100 µg/mL). WSE has shown extremely statistically significant (p<0.0001) clot lysis (90.00%) compared to NS (3.76%) whilst it was also significantly different (p<0.0063) to STK (72.41%) exhibiting LC50 of 1,795.90 µg/mL vs. VCS (39.25 µg/mL) in a dose-dependent manner. The current results suggested WSE has a potent thrombolytic effect with mild dose-dependent cytotoxicity towards brine shrimp nauplii (Artemia salina). It also suggested WSE might have enzymatic roles on thrombin, fibrin, and plasmin of blood. This pharmacological action of WSE is might be due to its antioxidant property, short-chain fatty acids and/or amino acids. Further studies are highly recommended on the enzymatic role(s) and bioactive phytoconstituents of WSE.
Article Details
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
Asgary, S., Najafi, S., Ghannadi, A., Dashti, G., & Helalat, A. (2012). Efficiency of black cumin seeds on hematological factors in normal and hypercholesterolemic rabbits. ARYA atherosclerosis, 7(4), 146-150.
Lebda, F. M., Bamosa, A. O., Kaatabi, H., Al Elq, A., & Al-Sultan, A. (2012). Effect of Nigella sativa on hemodynamics, hemoglobin, and blood coagulation in patients with type 2 diabetes. The Egyptian Journal of Haematology, 37(2), 73-80.
Ahmad, A., Husain, A., Mujeeb, M., Khan, S. A., Najmi, A. K., Siddique, N. A., ... & Anwar, F. (2013). A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pacific journal of tropical biomedicine, 3(5), 337-352.
Al-Jassir, M. S. (1992). Chemical composition and microflora of black cumin (Nigella sativa L.) seeds growing in Saudi Arabia. Food Chemistry, 45(4), 239-242.
Houghton, P. J., Zarka, R., de las Heras, B., & Hoult, J. R. S. (1995). Fixed oil of Nigella sativa and derived thymoquinone inhibit eicosanoid generation in leukocytes and membrane lipid peroxidation. Planta medica, 61(01), 33-36.
Cheikh-Rouhou, S., Besbes, S., Hentati, B., Blecker, C., Deroanne, C., & Attia, H. (2007). Nigella sativa L.: Chemical composition and physicochemical characteristics of lipid fraction. Food chemistry, 101(2), 673-681.
Gholamnezhad, Z., Havakhah, S., & Boskabady, M. H. (2016). Preclinical and clinical effects of Nigella sativa and its constituent, thymoquinone: A review. Journal of ethnopharmacology, 190, 372-386.
Babar, Z. M., Azizi, W. M., Ichwan, S. J., Ahmed, Q. U., Azad, A. K., & Mawa, I. (2019a). A simple method for extracting both active oily and water soluble extract (WSE) from Nigella sativa (L.) seeds using a single solvent system. Natural product research, 33(15), 2266-2270.
Babar, Z. M., Jaswir, I., Tareq, A. M., Ali Reza, A. M., Azizi, W. M., Hafidz, M., ... & Ichwan, S. J. (2019b). In vivo anxiolytic and in vitro anti-inflammatory activities of water-soluble extract (WSE) of Nigella sativa (L.) seeds. Natural Product Research, 1-6.
Dewan, S. M. R., & Das, A. (2013). Investigation of in vitro thrombolytic potential and phytochemical nature of Crinum latifolium L. leaves growing in coastal region of Bangladesh. Int J Bio Pharm Res, 4(1), 1-7.
Ali, M., Salim Hossain, M., Islam, M., Arman, S. I., Sarwar Raju, G., Dasgupta, P., & Noshin, T. F. (2014). Aspect of thrombolytic therapy: a review. The Scientific World Journal, 2014.
Tanaka, K. A., Key, N. S., & Levy, J. H. (2009). Blood coagulation: hemostasis and thrombin regulation. Anesthesia & Analgesia, 108(5), 1433-1446.
Chapin, J. C., & Hajjar, K. A. (2015). Fibrinolysis and the control of blood coagulation. Blood reviews, 29(1), 17-24.
Mahmoudvand, H., Sharififar, F., Assadipour, A., Hassan Moshafi, M., & Alishahi, F. (2017). Bioassay Screening of the Essential Oil and Various Extracts of Nigella sativa L. Seeds Using Brine Shrimp Toxicity Assay. Herbal Medicines Journal, 2(1), 26-31.
Rahmatullah, M., Sadeak, S. M. I., Bachar, S. C., Hossain, M. T., Abdullah-al-Mamun, M., Jahan, N., ... & Rahman, S. (2010). Brine shrimp toxicity study of different Bangladeshi medicinal plants. Advances in Natural and Applied Sciences, 4(2), 163-173.
Simundic, A. M., Bölenius, K., Cadamuro, J., Church, S., Cornes, M. P., van Dongen-Lases, E. C., ... & Hoke, R. (2018). Joint EFLM-COLABIOCLI Recommendation for venous blood sampling. Clinical Chemistry and Laboratory Medicine (CCLM), 56(12), 2015-2038.
Prasad, S., Kashyap, R. S., Deopujari, J. Y., Purohit, H. J., Taori, G. M., & Daginawala, H. F. (2006). Development of an in vitro model to study clot lysis activity of thrombolytic drugs. Thrombosis Journal, 4(1), 14.
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. J., & McLaughlin, J. L. (1982). Brine shrimp: a convenient general bioassay for active plant constituents. Planta medica, 45(05), 31-34.
Distel, M., & Köster, R. W. (2007). In vivo time-lapse imaging of zebrafish embryonic development. CSH Protoc, 2007.